

Team: D Radhakrishnan, CM (Pulp Operations) & A Kavinkumar, AM (Boiler)

Core values...

We, at SPB are committed to continually improve our Energy Efficiency by:

- Analysing the present status of energy generation and consumption in our mill
- Fixing energy consumption targets for each department
- Monitoring energy consumption on a daily basis
- Conducting periodic energy audits
- Fixing the yearly target for energy reduction and implementing the energy conservation schemes to achieve the target
- Involving and motivating all employees to reduce energy consumption

K S Kasi Viswanathan Managing Director

SPB's Commitment for Excellence

2000

Sustainable Process Plantations – 20.41 Crores of All our products are Seedlings in 24,764 Acres of Land 100% Biodegradable Paper M/c & Recyclable 165000 TPA 2 Stage ODL **RDH Technology ECF Bleaching Farmer** Recausticizer **SPB** 02 Evaporator Wet lap M/c **Ponni** 35000 TPA 27 MW TG - Extraction cum Cond **R8 - CIO2** Limekiln 21 MW TG - BOCK Pressure **Power Boiler** Recovery **Boiler** Substitution Furnace oil with Biomethane gas – 3.5 KL / day Substitution of coal with Biomass – 15% RE share – 61%

Highlights of the Year

Highest ever production in Unit: Erode – 1.65 lakhs MT

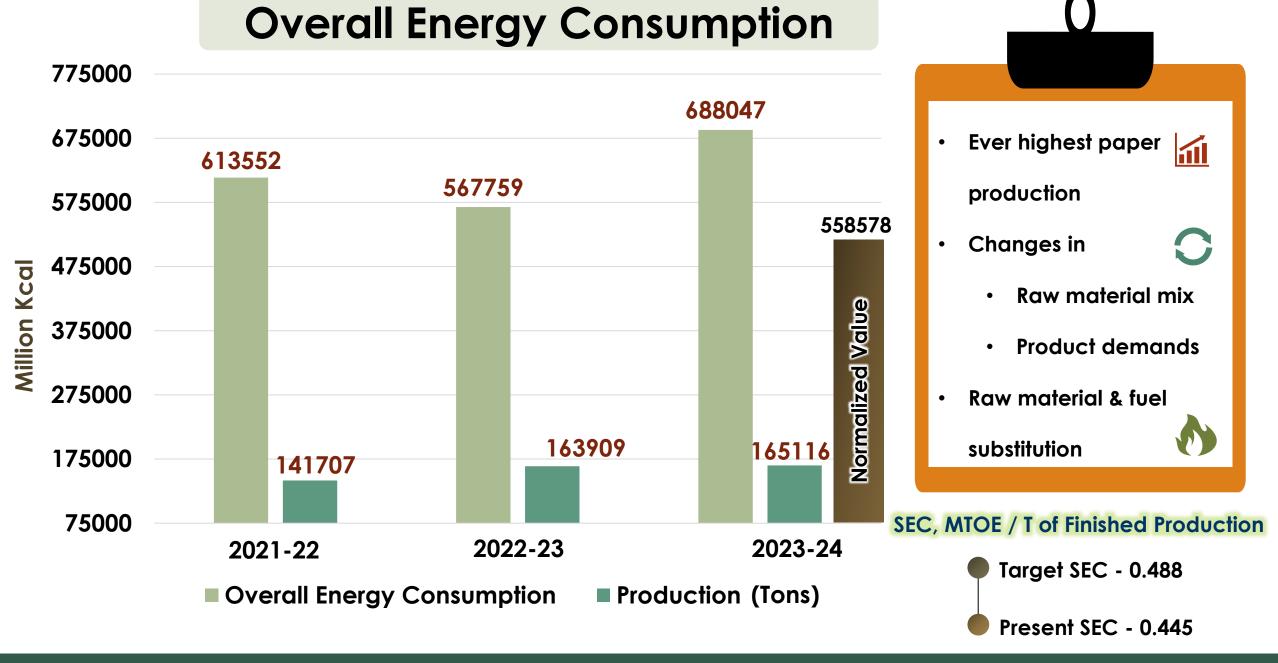
Key contributors for achieving 100% of its production capacity. MF1, MF2 & MF3 Machines

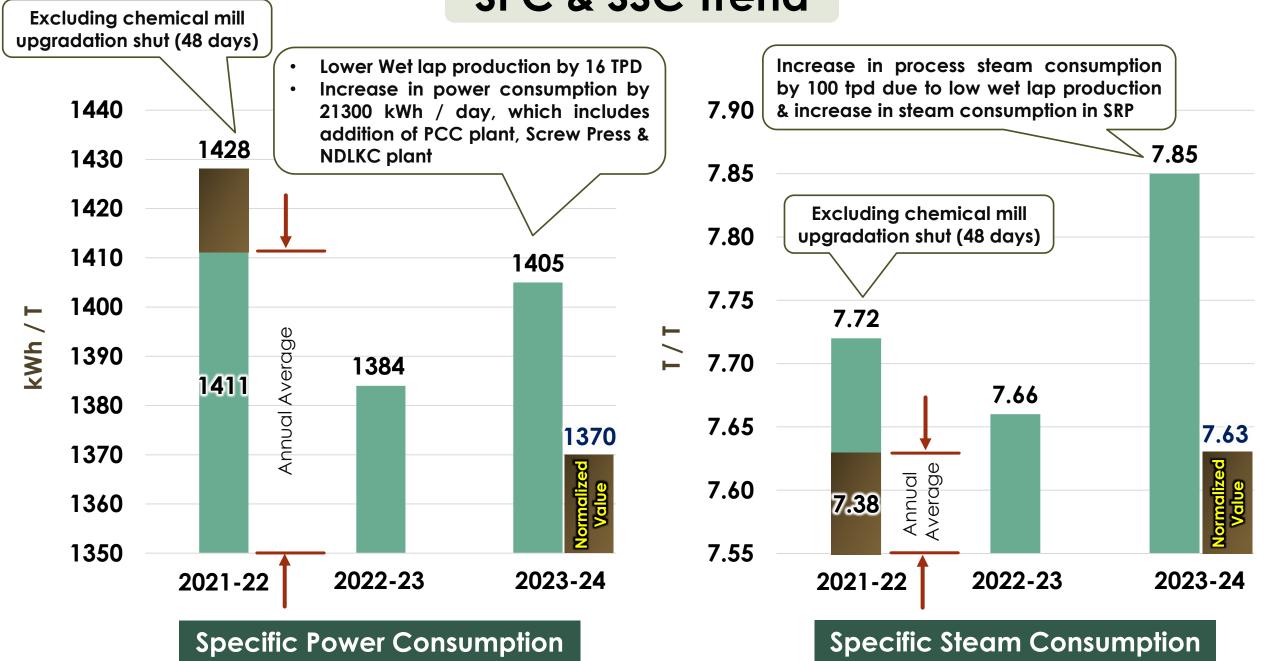
Good progress in Tree Farming initiative.

Company certified under the Energy Management System ISO 50001: 2018

During the crisis, usage of alternate raw material in place of wood - Increase in bagasse production 52 TPD avg

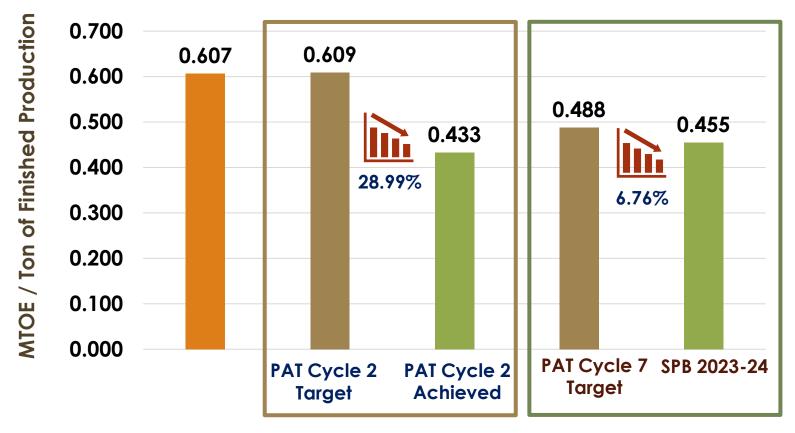
Efficiency Effectiveness




- Coal Boiler efficiency 79% even with usage of Biofuels
 Minimum usage of live steam below 90 °C
- Recovery Boiler Steam / T of solids 3.12 t/t
- TG Steam to Power ratio
 - Condensing Turbine 6 t / MWh
 - Back pressure Turbine 8.30 t / MWh
- Turbine efficiency
 - Condensing Turbine 45.67%
 - Back pressure Turbine 86.57%

- Maximum utilization of flash vapours
- IE3 motors installation 158 Nos
- Steam trap monitoring
- Condensate recovery and re-utilization
- Steam consumption study and its optimization
- Conducting periodical Energy Audits

Highlights of the Year (Contd...)



SPC & SSC Trend

Benchmarking & Road Map

Specific Energy Consumption

(Source: Gazette Notification Dt: 31.03.2016 & 26.10.2021)

Notable Project:

- Elimination of 22 KV system Power saving 960 kWh / day
- Installation of Cal coil system in PM 5 Power saving 1500 kWh / day

Live Projects – FY: 2024-25							
In Pipe line	5						
Annual Savings	8162 MKcal						
Reduction in SEC	8%						
Investment	375 Lacs						

Projects Planned – FY 24-25

Road Map Based on NAPCC

Solar Mission

- Admin block, Godown and Project office are powered by solar system.
- In Unit-2 installing a 3 MW solar system

Enhanced Energy Efficiency

- PAT Both units have achieved the Targets
- EEFP Identified us for the DEEP
 Project & is being implemented
- FEEED Conversion of IE2 to IE3 motors

Sustainable Habitat

- Sustainable farm forestry making us wood positive
- Procuring FSC certified wood
- Self-sufficient in steam & power

Water Mission

- SWC reduction 9%
- Covering 1200 acres of land with treated effluent for cultivation of sugarcane
- Unique models are in pipe line which will be first in the Paper industry to reduce pollution load and water consumption by 30%

Road Map Based on NAPCC (Contd...)

Sustaining the Himalayan Eco system

- We take care of flora and fauna
- Wood positive
- Carbon positive through sequestration

Strategic Knowledge for Climate Change

- Present global trends in CCUs
- Net Zero efforts
- Energy switch over

Green India

- Plantations 20.41 crores of seedlings in 24,764 acres of land
- Green Manufacturing system guided by CII
- Self sufficient in wood

Sustainable Agriculture

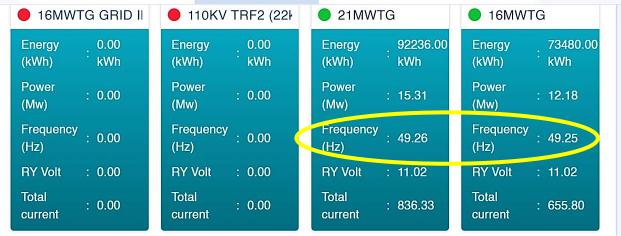
- Pioneer in circular economy
- Sugarcane Plantations abosorbs 4 times more CO2 than normal trees
- Reducing dependency on vigin fibers by using agro residues

Project Summary – 2021-22 to 2023-24

- ECS Implemented 24
- Investment Rs. 89 Lacs
- Steam Saved 50077 Tons
- Power Saved 69 Lakh kWh
- Cost Saved 1106 Lacs
- Pay back 1 Month

- ECS Implemented 17 Nos
- Investment Rs. 211 Lacs
- Steam Saved 3805 Tons
- Power Saved 2.31 Lakh kWh
- F.Oil saved 274 KL
- Cost Saved Rs. 621 Lacs
- Pay back 4 Months

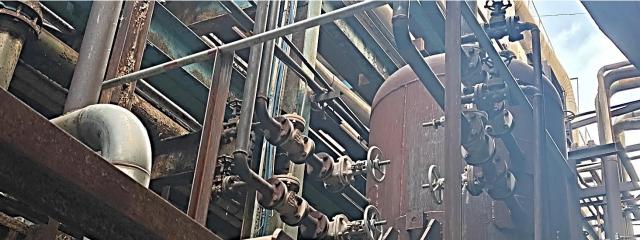
Emission reduction


- ECS Implemented 17 Nos
- Investment Rs. 48 Lacs
- Steam Saved 10024 Tons
- Power Saved 6.10 Lakh kWh
- Cost Saved Rs. 194 Lacs
- Pay back 1 Month

Steam saved 63906 Tons

Power saved 77 Lakh kWh

F. Oil saved
274 KL



Key Project – 2022-23

Firing of Bio fuels through overfeeding

- Investment Rs. 36 Lakhs
- Coal saved 9 TPD
- Cost saved Rs. 291 Lakhs
- Pay pack 1 ½ Months

Key Project – 2021-22

TG Frequency Reduction

- Investment Nil
- Power saved 19200 kWh / day
- Cost saved Rs. 410 Lakhs
- Pay pack Immediate

Key Project – 2023-24

Installation of Flash tank near RDH hot water tank

- Investment Rs. 18 Lakhs
- Steam saved 18 TPD
- Cost saved Rs. 85 Lakhs
- Pay pack 3 Months

Innovative Project

Production Increase in MF 1 by 10%

Trigger for the project

- Work on increasing the productivity with optimum energy utilization in old machines
- Cost for silent drive system is quite high.

Challenges

To enhance the production within the available system

Approach

- Brain storming
- Available potential of each equipment
- Minimum investment and PDCA cycle

Innovative Project (Contd...)

Production Increase in MF 1

Description	Wire part	Press part	Dryer part
Moisture Removed (%)	95	2.5	2.5
Cost (%)	15	15	70

Solutions

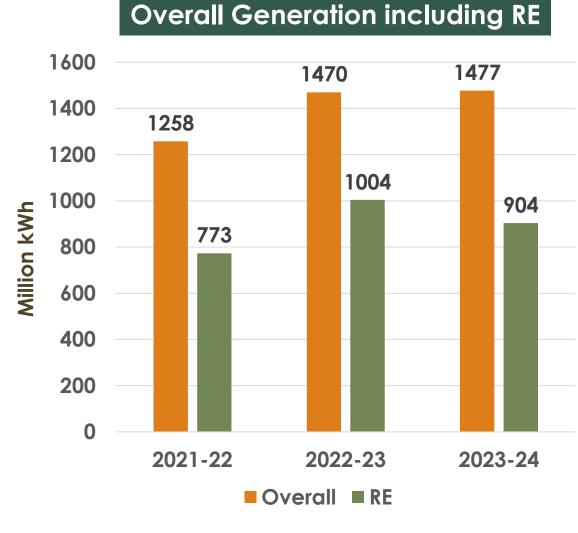
Wire part - Without changing the motor (600 KW) of high speed, we simply introduced a pulley system that makes our requirement possible without much investment.

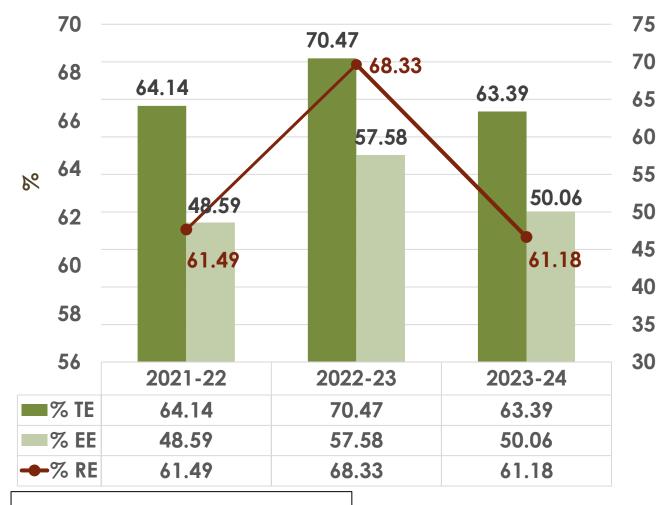
 Press part - Load improvement by increasing cylinder size from 10 inches to 14 inches.

Innovative Project (Contd...)

Production Increase in MF 1

Outcome achieved by the project


S. No	Description	UOM	Value
1	Moisture Reduction	%	71 to 65
2	Increase in Press load	Kg/CM	38 to 60
3	Increase in M/c speed (47 GSM)	MPM	260 to 300
4	Increase in Production	TPD	6
5	Specific Steam Reduction	T/T	0.06
6	Annualized Cost Savings	Rs. in Lacs	2


Feasible, Sustainable, Self driven and beyond OEM

Replication Potential – Can be considered by all Paper Machines

Utilization of Renewable Energy Sources & Road Map

RE Share – Source: BLS, Bio fuel & Solar

FY 23-24 61.18%

- Change in raw material mix
- Fuel substitution

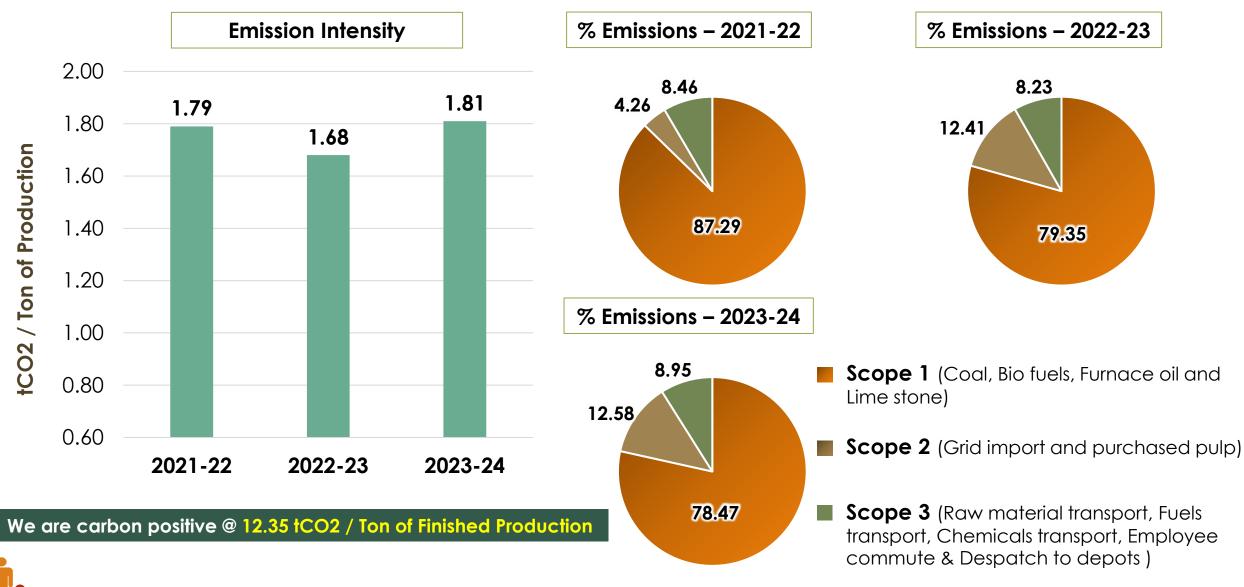
Utilization of Renewable Energy Sources & Road Map (Contd)...

2025-2030

- After MDP 3, with upgradation in pulp mill and recovery complex – Increase in RE share <u>1.64%</u> - Investment Rs. 20
- Bio fuel consumption in coal fired Boiler to be increased by 3.90% by improving fuel handling system and increasing feeding points

Crores

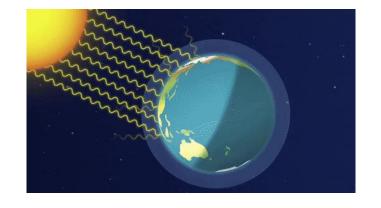
2025-2030


- After MDP 4, with new recovery boiler firing at 550 tpd and Recovery Boiler firing at 959 tpd - Increase in RE share 2.71%
- Bio fuel consumption in coal fired Boiler to be increased by 2.38%

2031-2035

- Coal fired Boiler to be retrofit for conversion from coal to 100% Bio fuel - Increase in RE share 3.50%
- Furnace oil consumption to be reduced by 30% - Increase in RE share **1.70%**

Conserve energy, protect the planet


GHG Inventorization

The Company has drafted the Business Responsibility and Sustainability Report for FY 2023-24, in line with the format prescribed by SEBI, which is given in Annexure - III in the Directors' Report

GHG Inventorization (Contd...)

Short term & Long term plan for GHG reduction

01. DEEP

Key DCs implementation of projects under "DEEP" as per BEE. (Utilization of waste heat flue gas for heating the biomass and minimize emission)

06. Pulp Production

Work on increasing the % RE share through step up in pulp production, which in turn will reduce dependency on imported pulp for the Unit 2 & 3

projects ation of ang the

02. Logistics

Purchase Policy – buying products based on Energy labelling to increase loadability and to reduce the transportation distance

03. RE share

Increase in RE share – 60% to 71%

05. Solar

Work on captive solar projects, to increase the renewable energy share and bring down dependency on grid Power

04. Green Policy

We have separate Green Procurement Policy which focuses on reduction in energy and procuring green products.

Green Supply Chain Management

Buying from **ISO** certified vendors

Ban on the usage of one-time plastic

As per the notification UPC-II-PWM(SUP)/2022 dt 12/08/2021, Ministry of Environment, Forest & Climate change

Choosing material from suppliers with **lesser** plastic/polymer content

Purchase of **BEE star rated electrical items**, usage of LED & energy efficient motors.

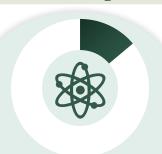
Awareness creation and

efficiency improvement

programs

Efforts on purchasing the batteries with the buyback options.

Waste Utilization & Management System – Last 3 Years


Chipper Dust

56.92%

Screen Rejects

16.61%

Bagasse Pith

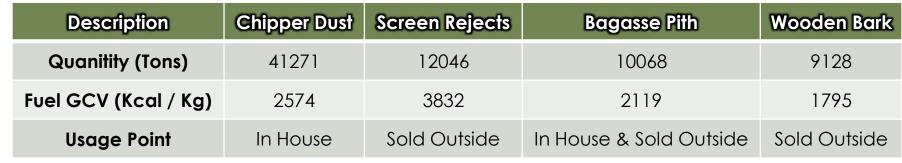
13.88%

Wooden Bark

12.59%

Board Manufacturing

Filter cake – 95426 Tons Wet pith – 10068 Tons


Cement Manufacturing

Lime sludge – 88747 Tons Lime grits – 19346 Tons Fly ash – 40791 Tons

Soap Manufacturing

Sodium sulphate – 3889 Tons

Waste Component	Quantity in Tons	Usage Point					
Methane gas	1980	Rotary Lime Kiln					
Food waste	Converted in to Biogas in anaerobic digester an used as cooking fuel						

Energy Management System

Daily Monitoring – Review Formats

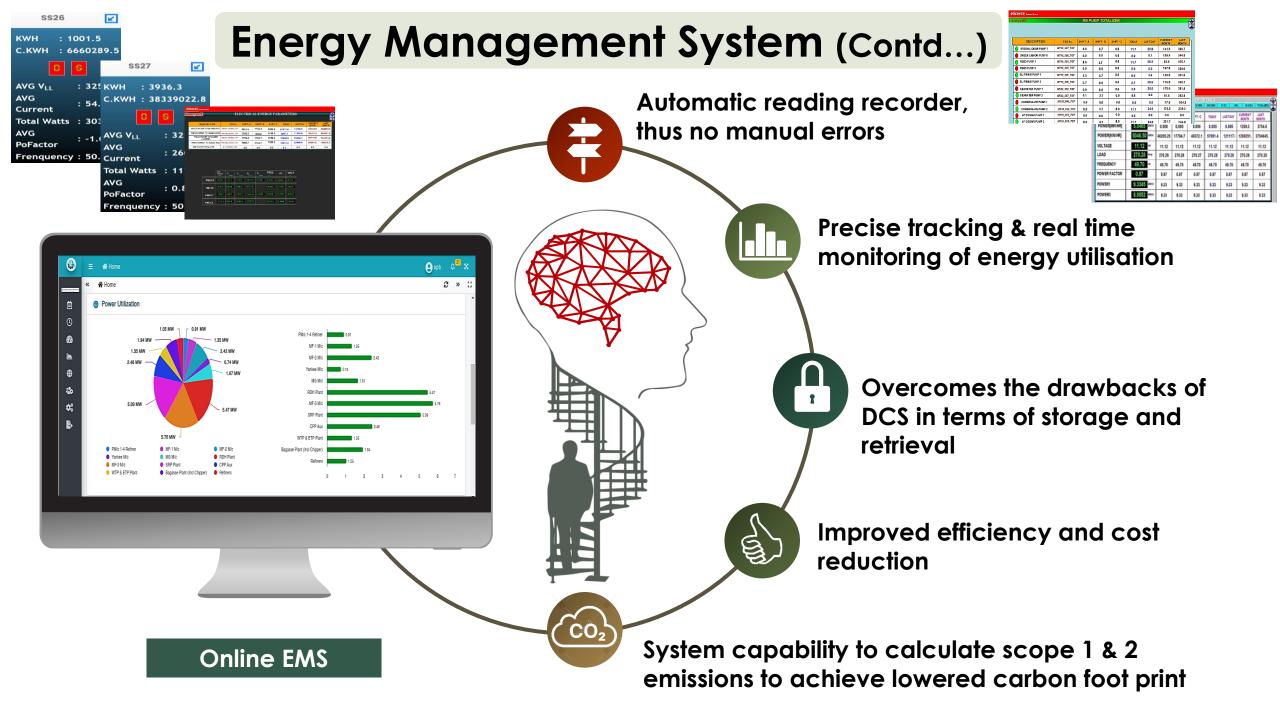
			No	orm - 2023-24			SSC Analysis on 03.03.2024							
S. No	Dept	иом	SSC T/T	Production TPD	Steam, TPD	SSC T/T	Production TPD	TPD	Production	Steam	Gap SSC	% Dev	Excess Steam	Corrective Action
1	RDH	t / t of Bl. Pulp	1.50	400	599	1.49	402	597	2	-2	-0.01	-1.00	-6	-
2	CLO2	t / t of ClO2 prod	11.20	8.50	95	10.96	9.76	107	1	12	-0.24	-2.12	-2	Plant stoppage for 1.50 hrs due to mech problem
3	Bagasse Pulp Mill	t / t of Bl. Pulp	2.10	54	113	2.03	78	159	24	46	-0.07	-3.30	-5	Pandia and ECF running - 20 Hrs.
4	SRP	t/t of TAA prod	5.20	257	1335	6.26	250	1563	-7	228	1.06	20.33	264	1) B 11 MP & LP APH -4 tons (7-11) 2) Deaerator +27 tons 3) Evaporator +88 tons Cau +24 ton
5	MF1	t/t of EFP	2.37	53	126	2.23	49	110	-4	-16	-0.14	84	1	Size press order - Nil. Paper break - 25 Mins. Steam pressure variation - Nil. Total down time - 2.30 Hrs.
6	MG	t/t of EFP	2.37	74	176	2.87	62	179	- ,O	77	0.50	21.21	31	Size press order - 100%. Paper break - 40 Mins. Steam pressure variation - 15 Mins. Total down time - 1.25 Hrs.
				L		L								Paper break - Nil.
◆ · 13.03.24 12.03.24 11.03.24 10.03.24 08.03.24 07.03.24 06.03.24 03.03.24 ⊕ : ◀														

	SPC analysis for 28.01.2024											
Dept	Description	Norm	Actual	Gap	Positive Remarks	Negative Remarks						
	Power (kWh/day)	127882	136626	8744								
RDH	Production (tpd)	400.00	405.2	5.2	Higher wood pulp production							
	SPC (kWh/ t of BI pulp)	320	337	17								
	Power (kWh/day)	6163	5950	-213								
CLO2	Production (tpd)	8.50	9.506	1.006	Higher production							
	SPC (kWh/ t of CIO2)	725	626	-99								
	Power (kWh/day)	24320	22040	-2280		11 (2001)						
ВРМ	Production (tpd)	54	46	-8		Plant stopped for Instrument Wave problem (2:30 hrs) & High bleached eve (5)						
	SPC (kWh/ t of Bl pulp)	450	480	30								
	Power (kWh/day)	105245	106388	1143	1) 2C body cut out for tube cleaning & Lower.	M						
SRP	Production (tpd)	257	271.3	14.3	kW pumps are running in 1A, 1C, 2A, 2B and							
	SPC (kWh/ t of TAA)	410	392	-18	2) Higher TAA production							
	Power (kWh/day)	162887	180373	17486	60/11	1) Absolute power got increased due to MF1 machine speed varies from 285 to 290 mpm, Yankee machine running at						
PM 1-4	Production (tpd)	255 264.01		9.01	Higher EP	195 MPM & MF2 machine speed increased from 590 to 600 mpm 2) stock power increased due to low bagasse consumption						
<u> </u>	28.01.24 27.01.24 26.01.24 25.0	01.24 24.0	1.24 23.01.	222,0172	4 21.01.24 20.01.24 🕂 : 4	11.1. (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1						

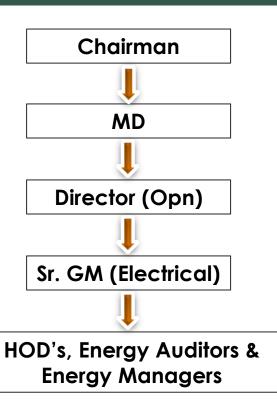
DATE : 25/08/2024

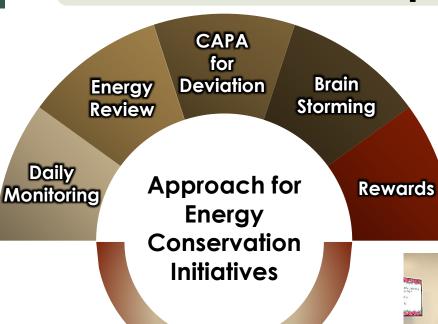
	SE	ECIFIC	CONSUMPTION	FROM 01/03/2	4 TO 05/03/24	DATE : 2	5/08/2024
STEAM SPECIFICATION	L o	202/03/01	2024/03/02	2024/03/03	2024/03/04	2024/03/05	TOTAL
EQU FINISHED PAPER		464.88	397.56	445.21	447.95	484.78	2240.38
MARKET WETLAP PULP	BD T	75.00	94.00	150.00	159.00	110.00	588.00
IMP/IND/WPP F AP	BD T	28.40	29.20	30.80	31.20	26.50	146.10
TOTAL STEAM CONT. MP110N	T	4814.00	4570.00	4865.00	4822.00	4710.00	23781.00
CONDENSATION	T	746.00	709.00	825.00	778.00	814.00	3872.00
DEA STEAM FOR CONDENSATION	T	126.82	120.53	140.25	132.26	138.38	658.24
STEAM FOR PROCESS	T	3941.18	3740.47	3899.75	3911.74	3757.62	19250.76
STEAM / T OF BLD PULP	T	4.26	5.05	4.10	3.98	4.28	4.255
STEAM FOR MARKET PULP	T	198.61	326.98	488.80	508.71	357.24	1880.34
STEAM FOR PAPER PRDN	T	3742.57	3413.49	3410.95	3403.03	3400.38	17370.42

7.66


	.611						
POWER SPECIFICATION	М	24/03/01	24/03/02	24/03/03	24/03/04	24/03/05	TOTAL
EQU FINISHED PAPER	T	465	398	445	448	485	2240
MARKET WETLY E/SI PULP	BD T	75	94	150	159	110	588
IMP/IND/WPP FOR	BD T	28	29	31	31	27	146
TOTAL POWER AVAILABILITY	kWh	715497	648282	705654	725195	692180	3486808
POWER WHEELING-TVL	les els	0	0	0	0	0	0
OVERALL POWER CONSN.	kwh kwh	715497	648282	705654	725195	692180	3486808
POWER / T OF BLD PULP	kwh	596	648	560	553	541	571
POWER FOR MARKET PULP	kwh	27796	41991	66711	70693	45152	252343
POWER FOR PAPER PRODN	le de	687701	606291	638943	654502	647028	3234465
SP.POWER CONSN./T OF EFP		1479	1525	1435	1461	1335	1444

EnMS Challenges


05 System Security


Understanding the Normalization and Integration with multiple variables

Energy Management Structure

Teamwork & Employee Involvement

Restoring basic condition of equipments

Process /
Energy
Optimization

Innovation & 03
Technological Upgradation

Awareness /
Knowledge
Management

Audits – Internal & External

05

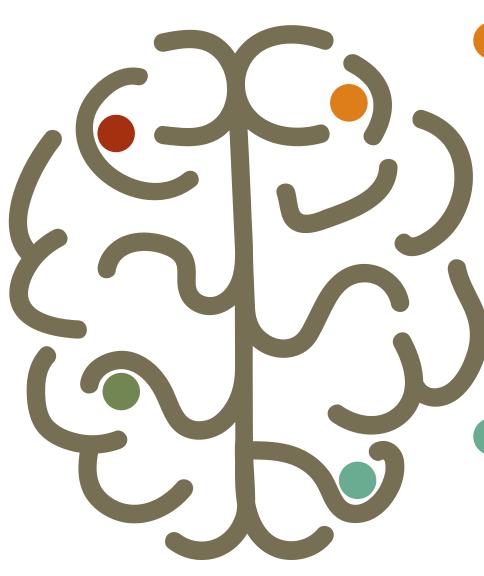
Honesty

Dedication

Trust

Passion

Success


Learnings from CII Events

Energy

- Modern trends and latest updates on Steam Turbo
 Generator
- Use of solid waste from recycled paper mills to develop biofuels
- Awareness about future energy sources / trends, available technologies

Best Practices

- Resource Efficiency
- Optimization of minimal usage of energy, water and fiber

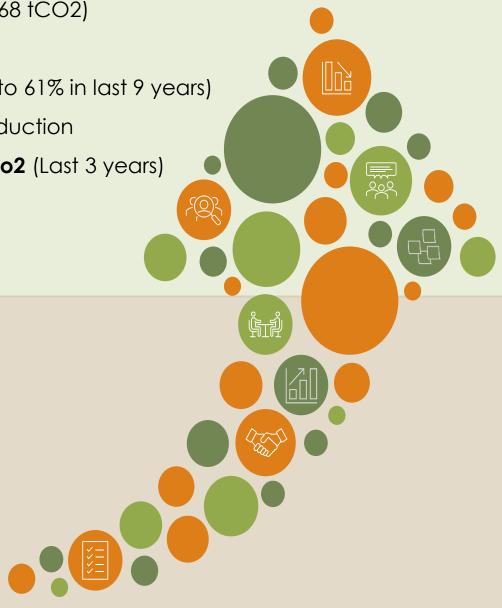
Sharing of Knowledge

- Sustainable pulp production
- Advancement in automation for Pulp & Paper mills
- Exposure to experts in different fields

Environment

- Exploring alternate Fuels
- New age evaporator system for Zero Liquid Discharge

Fostering towards NET ZERO Commitment


Moving towards Net Zero Emissions including scientific based targets for scope 1, 2 & 3 emissions

2015 -2023 • 32% reduction in Emissions (FY 15-16: 2.46 tCO2; FY 22-23: 1.68 tCO2)

- 100% FSC Certified Wood Procurement Achieved
- Increased Renewable Energy Source to 61% (From 51.65% to 61% in last 9 years)
- Installation of PCC plant by Dec 2022 8050 TPA of CO2 reduction
- Carbon positive through Farm Forestry Management: 12 tCo2 (Last 3 years)

- 2023-2027
- Procurement of more Indigenous material
- ISO 50001 EnMS Certification by 2023– Achieved
- Increase Renewable Energy Source to 71 %
- Elimination of Plastics in our product
- Biomass heating with flue gas

- 2027-2030
- **Hybrid Energy** (Solar) & Process heating by Solar thermal
- Supplier Emission Reduction by **40%**
- Scale up Renewable Thermal Energy Innovations
- Scaling up Pulp Production for Self Sufficiency & increasing Renewable Energy to the level of 75% to 80%

Recognize

Empower

Repeat

Excelling Efforts



Our Efforts & Journey Continues in the Pursuit of "Manufacturing Excellence in Energy Performance"

Proud to be a Responsible Paper Maker & Energy Leader

Thank You